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ABSTRACT 
 

This paper presents a new method for optimization of dynamic response of structures 
subjected to seismic excitation. This method is based on the concept of uniform distribution 
of deformation. In order to obtain the optimum distribution of structural properties, an 
iterative optimization procedure has been adopted. In this approach, the structural properties 
are modified so that inefficient material is gradually shifted from strong to weak areas of a 
structure. This process is continued until a state of uniform deformation is achieved. It is 
shown that in general for a MDOF structure there exists a specific pattern for distribution of 
structural properties that results in an optimum seismic performance. The application of the 
proposed method for optimum seismic design of different structural forms such as truss-like 
structures and shear-buildings is presented. 

 
Keywords: optimal strength pattern, performance-based design, seismic loading, ductility, 
optimum seismic performance 

 
 

1. INTRODUCTION 
 

Seismic design is currently based on force rather than displacement, essentially as a 
consequence of the historical developments of an understanding of structural dynamics 
and, more specifically, of the response of structures to seismic actions and the 
progressive modifications and improvement of seismic codes worldwide. Consequently, 
the seismic codes are generally regarding the seismic effects as lateral inertia forces. 
Although design procedures have become more rigorous in their application, this basic 
force-based approach has not changed significantly since its inception in the early 1900s. 
Use of forces as a design basis has remained more a matter of convenience than a 
representation of actual behavior during earthquakes. Many structures have apparently 
survived earthquakes capable of inducing inertia forces many times larger than those 
corresponding to their structural strength, if a linear response was assumed. The concept 
of ductility has then been introduced to reconcile this apparent inconsistency, and 
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account for the anomaly survival with inadequate strength through nonlinear response. 
Subsequently, much research efforts have been directed to determining the available 
capacity of different structural systems, performing extensive experimental and 
analytical studies to determine their safe deformation capacity. This may be regarded 
as a more appreciation of the importance of deformation, as opposed to strength, in 
seismic design. 

Indeed, a review of the history of seismic design indicates that initially design was 
purely based on strength, or force consideration. As the importance of deformation has 
come to better appreciation, the approach has been to attempt to modify the existing 
force based approach to include consideration of deformation, rather than to rework 
the procedure on more rational basis.  

In the conventional seismic design, the pattern for distribution of structural 
properties such as strength, stiffness, and damping in a preliminary design is normally 
based on the presumption that the structure vibrates within its linear-elastic range [1]. 
Recent design guidelines, such as FEMA 356 [2] and SEAOC Vision 2000 [3], place 
limits on acceptable values of response parameters, implying that exceeding of these 
acceptable values represent violation of a performance objective. Further modifications 
to the preliminary design, aiming to satisfy the Performance Objectives could lead to 
some alterations of the original distribution pattern of structural properties. As 
structures exceed their elastic limits in severe earthquakes, the use of inertia forces 
corresponding to elastic modes may not lead to the optimum distribution of structural 
properties. This issue has been viewed by researchers from different angles. 

Many experimental and analytical studies have been carried out to investigate the 
validity of the distribution of lateral forces according to seismic codes. Lee and Goel 
[4] analyzed a series of 2 to 20 storey frame models subjected to various earthquake 
excitations. They showed that in general there is a discrepancy between the earthquake 
induced shear forces and the forces determined by assuming distribution patterns. The 
consequences of using the code patterns on seismic performance have been 
investigated during the last decade [5,6,7]. Chopra [8] evaluated the ductility demands 
of several shear building models subjected to the El-Centro Earthquake of 1940. The 
relative story yield strength of these models was chosen in accordance with the 
distribution patterns of the earthquake forces specified in the Uniform Building Code 

[9]. It was concluded that this distribution pattern does not lead to equal ductility 
demand in all stories, and that in most cases the ductility demand in the first story is 
the largest of all stories. The first author [10,11] proportioned the relative story yield 
strength of a number of shear building models in accordance with some arbitrarily 
chosen distribution patterns as well as the distribution pattern suggested by the 
UBC1997 [9]. It is concluded that: (a) the pattern suggested by the code does not lead 
to a uniform distribution of ductility, and (b) a rather uniform distribution of ductility 
with a relatively smaller maximum ductility demand can be obtained from other 
patterns. These findings have been confirmed by further investigations [12,13], and led 
to the development of a new concept: optimum distribution pattern for seismic 
performance that is discussed in this paper.  
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2. OPTIMIZATION FOR DYNAMIC EXCITATION 
 

2.1 Background 
As discussed before, for decades seismic codes have regarded the seismic effects as lateral 
inertia forces. Consequently, in almost all optimization approaches developed for seismic 
design, the forces are regarded as static with a pre-assumed pattern of distribution such as 
triangular. In effect, these approaches are similar to the conventional optimization methods 
for design of structures subjected to static loadings. It is generally endeavored to induce a 
status of uniform deformation throughout the structure to obtain an optimum design as in 
Gantes et al. [14]. In an attempt for developing an optimization method for seismic design of 
steel frames, Gong et al. [15] used a set of story drift limits as performance objectives, and 
considered the seismic effects as static forces with parabolic distribution. From their results 
it can by concluded that the structural weight decreases as the deformation approaches to a 
uniform status. It should be noted that although in this procedure the effect of nonlinear 
behavior is considered, the seismic effects are regarded as external static forces rather than 
induced deformation. Therefore, the procedure is still remains similar to the conventional 
optimum design methods. 

Some researchers have attempted to consider the effect of dynamic nature of seismic 
forces. Lee and Goel [4] proposed a design procedure using predefined performance targets. 
The procedure is based on minimizing the difference between the earthquake induced shear 
forces and the forces used for seismic design. Although within the linear range this concept 
seems to have a rather rational basis, the use of shear forces as a means of assessing the 
adequacy of design looses its weight in nonlinear ranges of vibration.  

In his early attempts to establish and apply the performance-based method for seismic 
design of structures in late 1980's, the first author recognized the fact that several acceptable 
solutions could be obtained for a given set of objective targets such as ductility demands. 
This was later confirmed by the results of nonlinear dynamic analysis of shear buildings 
subjected to seismic excitations [10,11]. These early studies demonstrated that a 
conventional seismic design does not lead to a uniform distribution of ductility. Further 
investigations [12,13], suggested that we need to move towards a rather uniform distribution 
of ductility in order to reduce the ductility demand. Afterwards extensive studies have been 
conducted to highlight and establish a rational basis for this concept [16]. Indeed, in spite of 
those who assume the concept of uniform deformation as a performance objective, the 
authors are using it as a means for obtaining an optimum design. In the following, it has 
been attempted to substantiate the concept of uniform deformation and its application in 
optimum design for seismic excitation. 

 
2.2 Inefficient Material 
As discussed before, the use of distribution patterns for lateral seismic forces suggested by 
codes do not guarantee the optimum performance of structures. The current studies indicate 
that during strong earthquakes the deformation demand in structure does not vary uniformly. 
For instance, the steel frame shown in Figure 1 is designed in accordance with UBC1997 [9] 
and subjected to the Northridge earthquake of 1994 (CNP196). Non-linear dynamic analysis 
is conducted using the computer program DRAIN-2DX [17]. It is illustrated in Figure1 that 
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deformation demand is not distributed uniformly. On the other hand, the maximum 
interstorey drift occurs almost at the top, and it decreases downward. Hence, it can be 
concluded that in some parts of the structure, the deformation demand does not reach the 
maximum level, and therefore, the capacity of the material is not fully exploited. 
 

 

Figure 1.  Inter-story drift distribution for a 10 story steel frame subjected to Northridge 
Earthquake 1994 (CNP196) 

 
2.3 Principle of Strength-Deformation Reciprocal Relation 
Early studies on shear building models have proved that it is possible to improve the 
performance of a model by shifting the material from strong to weak parts [12,13,16]. This 
results in a uniform distribution of deformation, and reduces the maximum deformation 
demand. The coincidence of uniform distribution of deformation with better seismic 
performance can be explained by the principle of strength-deformation reciprocal relation. The 
effect of variation of strength on seismic performance has been studied extensively [18,19]. 
These studies have lead to development of numerous strength- ductility (R-µ) relationships.  
 

 

Figure 2. Typical R-µ−Τ relationship 
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Figure 2 shows a typical R-µ−T relationship. R is inversely proportional to strength. In this 
figure, three types of structures have been modeled. ST1 and ST2 represent low and high period 
structures, respectively. In these models, it is assumed that stiffness remains unchanged as 
strength varies. ST3 represents structures in which any decrease in strength is accompanied by a 
decrease in stiffness. This figure indicates that generally µ increases as strength decreases. It 
should be noted that in some exceptional cases this principle may be violated in low period 
range of ST3 type in which a decrease in strength is accompanied by an intensified decrease in 
stiffness (represented by the dotted arrow ST4 in Figure 2). Investigations have indicated that 
this rule is also applicable for MDOF systems [12]. 

 
2.4 Theory of Uniform Deformation 
Consider the mentioned structure of Figure 1 in which the distribution of deformation is not 
uniform. If maximum story drift is taken as the failure criterion, the results would indicate 
that only some parts of the structure have failed. On the other hand, the deformation in the 
remaining parts is less than the maximum allowable limit. The Strength-Deformation 
Reciprocal Relation suggests that if the strength in these parts decreased, the deformation 
would increase. Hence, if the strength is decreased incrementally, we should eventually 
obtain a state of uniform deformation. At this point the material capacity is fully exploited. 
As any decrease in strength is normally accompanied by a decrease of material, a structure 
becomes lighter as deformation is distributed more uniformly as compared with a structure 
with non-uniform deformation. Therefore, in general it may be concluded that we need to 
reach the status of uniform deformation for optimum use of material. This is denoted as the 
Theory of Uniform Deformation.  

 
 

3. OPTIMUM SEISMIC DESIGN OF TRUSS-LIKE STRUCTURES 
 

The Theory of Uniform Deformation is examined by a conceptual example shown in Figure 
3. The objective is to design a truss-like structure for sustaining four masses M1 to M4 by 
using any number of stud members connecting these masses to each other and to the 
supports A to E. This structure should not exceed a member ductility demand of 4 when 
subjected to the horizontal component of the Northridge Earthquake of 1994 (CNP196). A 
Rayleigh damping of 5% is assumed. No weight is considered for the masses and only the 
seismic forces are considered. Masses M1 to M4 are assumed to be 20, 5, 10, and 5 tons, 
respectively. Computer program Drain-2DX [17] is used for nonlinear dynamic analyses. At 
the starting point, a very general arrangement is chosen by considering all possible 
connections as shown in Figure 4.  In the first step, an identical area of cross section of 1 
cm2 is assumed for all members. It is also assumed that the strength of each member is equal 
to (Afy) in both tension and compression. The structure is subjected to the seismic excitation, 
and the ductility demand is calculated for all members. Subsequently, the area of cross 
section of all members is scaled until the maximum ductility demand reaches the target level 
of 4. 
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Figure 3. The position of masses and supports 

 
The distribution of material and ductility demand at this stage is shown in Table 1. These 

results indicate that some members undergo much less deformation than others. This implies 
that the material is not fully exploited in some members. 

 

Table 1: The preliminary and final arrangement of members 

Preliminary Arrangement Final Arrangement 
Members Cross Section 

(cm2) 
Member 
Ductility 

Cross Section
(cm2) 

Member 
Ductility 

1 1243.6 4.009 2363.8 3.998 

2 1243.6 2.303 0.0 --- 

3 1243.6 1.077 3246.9 4.001 

4 1243.6 1.173 0.0 --- 

5 1243.6 1.129 0.0 --- 

6 1243.6 1.735 0.0 --- 

7 1243.6 0.453 0.0 --- 

8 1243.6 0.580 0.0 --- 

9 1243.6 0.484 140.1 4.002 

10 1243.6 0.650 0.0 --- 

11 1243.6 0.209 522.2 3.999 

12 1243.6 0.764 330.0 4.001 

13 1243.6 0.623 0.0 --- 

14 1243.6 0.485 0.0 --- 

15 1243.6 0.273 0.0 --- 
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Preliminary Arrangement Final Arrangement 
Members Cross Section 

(cm2) 
Member 
Ductility 

Cross Section
(cm2) 

Member 
Ductility 

16 1243.6 1.191 691.2 4.000 

17 1243.6 1.123 818.6 4.000 

18 1243.6 0.189 0.0 --- 

19 1243.6 0.940 0.0 --- 

20 1243.6 1.800 1146.6 3.999 

21 1243.6 0.457 10.9 3.997 

22 1243.6 1.517 581.6 4.000 

23 1243.6 1.233 0.0 --- 

24 1243.6 0.226 0.0 --- 

25 1243.6 0.690 0.0 --- 

26 1243.6 1.057 629.6 4.001 

Cov  0.785  0.001 

Weight 162.3 ton 52.7 ton 

        Cov: Coefficient of variation 
 
Considering the Theory of Uniform Deformation, it should be attempted to move towards 

a uniform ductility distribution demand to obtain a lighter structure. To accomplish this, the 
following optimization procedure is employed: 

An arbitrary primary pattern is assumed for the distribution of structural properties that 
control the response of structure (such as strength, stiffness, and damping). Here, the cross 
section area is the only controlling parameter. Hence, as mentioned before, a uniform pattern 
is chosen. 

The structure is subjected to the excitation, and the maximum deformation is calculated, 
and compared with the target value. The structural properties are then scaled, without 
changing the primary pattern, until the maximum deformation demand reaches the target 
value. This pattern is regarded as a feasible answer, and referred to as the first acceptable 
pattern. For the above example, member ductility represents the deformation demand, and 
the results of the first and the final steps are presented in Table 1. 

The coefficient of variation (cov) of deformation distribution within the structure is 
calculated. If the cov is considered to be small enough, we can stop, and consider the pattern 
as practically optimum. Otherwise the analysis continues. The cov of the first acceptable 
pattern was determined as 0.785. It is decided that the cov is high, and the analysis should be 
continued. 

At this stage the distribution pattern of structural properties is modified. Using the Theory 
of Uniform Deformation, the inefficient material is reduced until an optimum structure is 
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obtained. To accomplish this, the positions where the deformation is less than the target 
value are identified, and the material is reduced accordingly. Experience has shown that this 
alteration should be applied incrementally in order to achieve convergence in the numerical 
calculations. Hence, the following equation is used in the present studies: 
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Where di and dti are demand and target deformations at position i. (Psc)i is the structural 

control parameter, relating to position i. n denotes the step number. α is the convergence 
coefficient ranging from 0 to 1. For the above example, an acceptable convergence was 
obtained for a value of α=0.2. Considering the cross-section area, Ai, as the structural 
control parameter and member ductility,µi , as the deformation demand and substituting 4 as 
the target deformation for all members, the following equation is obtained: 
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Using these modified cross sections; the procedure is repeated from step 2, until a new 

feasible pattern is obtained. It is expected that the cov of deformation distribution for the 
new pattern is smaller than the corresponding cov for the previous pattern. This procedure is 
iterated until cov becomes small enough, and a status of rather uniform deformation prevails. 
Starting from a cov of 0.785, we reach a cov of 0.001 at the final step. A comparison of the 
results of primary and final steps in Table 1 leads to the following conclusions: 

The weight of total material has decreased from 162.3 ton to 52.7 ton. 
Member ductility demands in the final step have become remarkably uniform. 
The method has been able to recognize and eliminate the redundant and inefficient 

members. Out of 26 members in the primary arrangement in Figure 4 only 11 members 
remain in the final step as shown in Figure 5. 

 

Figure 4. Preliminary arrangement of members 
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Figure 5. Final arrangement of members 

 
 

4. OPTIMUM SEISMIC DESIGN OF SHEAR BUILDINGS 
 

The Theory of Uniform Deformation can be easily adapted for evaluation of optimum 
patterns for shear buildings. To obtain such optimum patterns, in principle, the steps 
mentioned in the previous section are followed with some modifications. It should be noted 
that there is a unique relation between the distribution pattern of lateral seismic forces and the 
distribution of strength (as the strength at each floor is obtained from the corresponding storey 
shear force). Hence, for shear buildings, we can determine the optimum pattern for distribution 
of seismic lateral loads instead of distribution of strength. Let us assume that we want to 
evaluate the most appropriate lateral loading pattern to design a 10-story shear building with a 
fundamental period of 1 sec, so that it can sustain the Northridge earthquake of 1994 (CNP196) 
without exceeding a maximum story ductility demand of 4. In the example model, each floor is 
considered as a lumped mass and the total mass of the structure is distributed uniformly over its 
height as shown in Figure 6. The Rayleigh damping is adopted with a constant damping ratio 
0.05 for the first few effective modes and non-linear dynamic analyses are conducted utilizing 
the computer program DRAIN-2DX [17]. Considering the Theory of Uniform Deformation, the 
following optimization procedure is used: 

 
Figure 6. Primary load distribution pattern for the shear-building  
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1.  Arbitrary patterns for primary height-wise distribution of strength and stiffness are 
considered. However, for shear buildings it is assumed that these two patterns are similar, 
and therefore, an identical pattern is assumed for both strength and stiffness. Here, the 
uniform pattern of Figure 6 is chosen for the primary distribution of strength and stiffness. 

The stiffness pattern is scaled so as to attain a fundamental period of 1 sec.  
Maximum ductility demand is calculated by performing nonlinear dynamic analysis for 

the given exaction. Subsequently, the strength is scaled (without changing the primary 
pattern) until the maximum deformation demand gets to a target value of 4. The resulting 
pattern is a feasible solution and can be considered as the first acceptable pattern. The first 
and final steps are illustrated in Table 2. 

 

Table 2: The preliminary and final arrangement of Strength and Stiffness 

Preliminary Arrangement Final Arrangement 

Story Story 
Stiffness 
(ton.f/m) 

Story 
Strength 

(ton.f) 

Story 
Ductility 

Story 
Stiffness 
(ton.f/m) 

Story 
Strength 

(ton.f) 

Story 
Ductility 

1 176717 1753 4 256456 1433 3.99 

2 176717 1753 2.46 241577 1350 3.99 

3 176717 1753 1.78 219796 1228 3.99 

4 176717 1753 1.41 194841 1089 4.00 

5 176717 1753 1.38 170502 953 4.00 

6 176717 1753 1.19 144584 808 3.99 

7 176717 1753 0.98 118423 662 3.99 

8 176717 1753 0.82 91522 511 3.99 

9 176717 1753 0.59 66385 371 3.98 

10 176717 1753 0.31 36515 204 3.99 

Cov   0.719   0.001 

Sum  17352   8610  

 
The cov (coefficient of variation) of story ductility distribution is determined. The 

procedure continues until cov decreases down to an acceptable level. For the first feasible 
pattern, the cov was determined as 0.719. The cove is considered to be high, and the analysis 
continues. 

Considering the Theory of Uniform Deformation, the distribution pattern is modified. To 
achieve this, the stories where the ductility demand is less than the target values are 
identified, and weakened by reducing the strength and stiffness. Similar to Equation 1, the 
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following equation is used for the good convergence: 
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Where iµ′  is ductility demand at ith story, and tiµ′  is the target ductility assumed as equal 

to 4 for all stories. Vi is the shear strength of the ith story. n denotes the step number. α is the 
convergence coefficient ranging from 0 to 1. For the above example, an acceptable 
convergence has been obtained for a value α=0.1. At this stage, a new pattern for heightwise 
distribution of strength is obtained. As mentioned before, the same pattern is used for 
heightwise distribution of stiffness. Now the procedure is repeated from step 2, until a new 
feasible pattern is obtained. It is expected that the cov of ductility distribution for this pattern 
is smaller than the corresponding cov for the previous pattern. This procedure is iterated 
until cov becomes small enough, and a rather uniform ductility demand is achieved. The 
story ductility patterns for preliminary and final designs are compared in Figure 7. This 
figure indicates the efficiency of this method to reach the status of uniform ductility demand.  
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Figure 7. Primary and Final distribution pattern for story Ductility, 10 story shear building 
with T=1 Sec and µti=4, Northridge 1994 (CNP196) 

 
Table 2 illustrates the results of analysis for the first and final step. Figure 8 demonstrates 

the variation of cov and the total strength from the first feasible pattern toward the final one. 
It can be concluded that the proposed method has a good capability for converging to the 
optimum solution. As shown in Figure 8, the total strength decreases up to 40% in five steps. 
The figure also indicates that the decrease in cov is accompanied by a decrease in total 
strength. Here the total strength is in proportion to the total weight of the seismic resisting 
system. These results are in agreement with the Theory of Uniform Deformation. 
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Figure 8. Cov of story ductility factors and total story strength for feasible patterns, 10 story 
shear building with T=1 Sec and µti=4, Northridge 1994 (CNP196) 

 
The height wise distribution of strength can be converted to the distribution of lateral 

forces. Such pattern may be regarded as the optimum pattern of seismic forces for the given 
earthquake. As shown in Figure 9, this would enable us to compare this optimum pattern 
with the conventional lateral load distribution suggested by codes for seismic design. 
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Figure 9. Comparison of UBC-97 & Optimum lateral force distribution, 10 story shear 
building with T=1 Sec and µti=4, Northridge 1994 (CNP 196) 
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As described before, an initial strength distribution is necessary to begin the optimization 
algorithm. In order to investigate the effect of this initial load (or strength) pattern on the 
final result, for the previous example four different initial load patterns have been assumed: 

A concentrated load on the roof level 
Triangular distribution similar to the UBC code of 1997 [9] 
Rectangular distribution 
An inverted triangular distribution with the maximum lateral load on the first floor and 

the minimum lateral load at the roof level 
For each case, the optimum lateral load pattern was derived for Northridge 1994 

(CNP196) event. The comparison of the optimum lateral load pattern for each case is 
depicted in Figure 10. 
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Figure 10. Optimum lateral force distribution for different initial load patterns, 10 story 
shear building with T=1 Sec and µti=4, Northridge 1994 (CNP196) 

 
As shown in Figure 10, the optimum lateral force pattern is not dependent on the initial 

strength pattern. However, the convergence speed of the algorithm is to some extent 
dependant on this initial pattern. This conclusion has been confirmed by analysis of 
additional shear buildings and ground motions. 

To investigate whether or not these findings are dependant on the selected seismic 
excitation, the following seismic records are also applied to the foregoing 10-storey shear 
building model: (1) The 1994 Northridge earthquake CNP196 component with a PGA of 
0.42g, (2) The 1979 Imperial Valley earthquake H-E08140 component with a PGA of 0.45g, 
(3) The 1992 Cape Mendocino earthquake PET090 component with a PGA of 0.66g, and (4) 
A synthetic earthquake record generated to have a target spectrum close to that of the 
UBC1997 [9] code with a PGA of 0.44g.  

Subsequently, the optimum strength-distribution patterns corresponding to these 
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excitations are determined, and compared with a typical conventional seismic load pattern 
suggested by the UBC1997 [9] in Figure 11. The figure indicates that for the same ductility 
demand, the optimum design requires less strength as compared with the conventional 
design. 
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Figure 11. Comparison of total strength demand for UBC-97 and Optimum distribution,  
10 story shear building, T=1 Sec and µti=4 

 
 

5. CONCLUSIONS 
 

This paper presents a new method for optimization of dynamic response of structures 
subjected to seismic excitation. This method is based on the concept of uniform distribution 
of deformation. 

It is shown that using the strength pattern suggested by seismic codes does not lead to a 
uniform distribution of deformation demand, and, it is possible to obtain uniform 
deformation by shifting the material from strong to weak parts. It has been shown that the 
seismic performance of such structure is optimal. Hence, it can be concluded that the 
condition of uniform deformation results in optimum use of material. This has been denoted 
as the Theory of Uniform Deformation. 

By introducing an iterative method, Theory of Uniform Deformation has been adapted 
for topology optimization in seismic design of truss-like structures. It is shown that this 
method can reduce the required structural weight by eliminating the redundant and 
inefficient members. 

With some modifications, Theory of Uniform Deformation has been adapted for 
optimum seismic design of shear buildings. It is concluded that this can efficiently provide 
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an optimum design. 
It has been demonstrated that there is generally a unique optimum distribution of 

structural properties, which is independent of the seismic load pattern used for initial design. 
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